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Abstract
We consider Dyson’s model (Dyson F J 1968 J. Math. Mech. 18 91) of an
ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum,
in the Liouville integrable case where the gas is monatomic (γ = 5/3) and
there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I).
In the cases of rotation about a fixed axis the separation of variables can be
achieved, and the separable variables are linearly related to a set of three
variables denoted by ρ,R,W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195;
Paper II). We show in the present work that these variables admit a natural
generalization to cases of rotation about a movable axis (precessing motion).
The present study is restricted to the consideration of the so-called degenerate
cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we
hope to generalize our results in the future to the non-degenerate ones as well.
We also present a new, compact and generally valid formulation of one of the
integrals of motion, of the sixth degree in the momenta, denoted by I6.

PACS numbers: 02.30.Ik, 45.20.Jj, 47.10.ab

1. Introduction

The model of a gas cloud considered here belongs to the more general class of self-gravitating
liquid and gas ellipsoid models whose study originated with Dirichlet (1861) and Riemann
(1861). A review of these models has recently been given by Borisov et al (2009) who
incorporate the later additions concerning gaseous ellipsoids by Ovsiannikov (1956) and by
Dyson (1968).

The Dyson model is gravitation-free and represents a rotating and expanding cloud of
gas of ellipsoidal shape, with a uniform temperature, a Gaussian density profile and a linear
velocity distribution. The vorticity vector is a constant of the motion and, in cases where it
vanishes and the gas has the monatomic adiabatic index γ = 5/3, the Dyson system becomes
integrable (see section 2) and is conjectured to have the Painlevé property. This is the particular
model that we consider in this paper.
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The sub-case where the rotation of the cloud is about a fixed (principal) axis, also referred
to as the block-diagonal case, has been treated in detail by Gaffet (2001b, Paper II) who
introduced a new set of four variables, denoted by W,ρ,R, π , in terms of which the equations
of motion take the remarkable form:

M

⎡
⎢⎢⎢⎢⎣

W ′

ρ ′

R′

π ′

⎤
⎥⎥⎥⎥⎦ = 0, M =

⎡
⎢⎢⎢⎢⎣

−4(ρ + π) 2W 0 �′(W)

2W −4α2/3 −2π R

0 −2π 1/(4ε) ρ

�′(W) R ρ −4β

⎤
⎥⎥⎥⎥⎦ , (1.1)

where a prime denotes the derivative with respect to the (time-like)-independent variable u,
and the parameters α2, ε, β are constants of the motion. Each set of parameters determines
a particular (two-dimensional) Liouville torus in phase space, specified by the compatibility
condition

det M = 0 (1.2)

together with a quadratic constraint relating the four variables:

4βπ − ρR = �(W) ≡ W 2 + 4εW + 4ε. (1.3)

Upon substitution of (1.3) into (1.2), it becomes the equation of a quartic surface in Cartesian
coordinates W,ρ,R, possessing 16 conic point singularities. The data of such a surface are
equivalent to those of a sixth degree polynomial P in one variable (Paper II, equations (2.30),
(2.31) therein; see also Gaffet 2006, Paper III)—a property at the heart of the solubility by
separation of variables which was demonstrated in Paper II.

It is of course a question of great interest whether or not the above-mentioned four variables
may admit appropriate generalizations when the block-diagonal constraint is relaxed. As a
first step toward answering it, let us now consider another sub-case of interest: that of minimal
energy of the motion, where the energy integral takes its minimum value compatible with a
given set of values of the remaining integrals, and the state of rotation is no longer constrained
to be about a fixed axis—that is, the 3 × 3 matrices describing the instantaneous state of
motion are not taken to be block-diagonal. For these cases, Gaffet (2006, 2007) obtained a
set of four variables playing the role of Cartesian homogeneous coordinates, with respect to
which the Liouville torus–(	) say—again assumes the form of a quartic surface, possessing
15 conic point singularities (16 in degenerate cases).

These coordinates could only be found, however, through extensive algebraic calculations,
and are not related to those of the block-diagonal case in an obvious way. The aim of this
paper is to show that they can be replaced by a new set of variables, which is a natural—
although highly non-trivial—generalization of the coordinates W,ρ,R. We restrict ourselves
to the consideration of the ‘degenerate cases’, which are those where the polynomial P has
a double root, but we hope to extend our results in a future work to the non-degenerate ones
as well.

2. The equations of motion and their first integrals

The equations of motion have been given by Dyson (1968), and have been summarized on
several occasions by the present author (Gaffet 1996, 2000, 2001c). Basically, the system may
be written in the form

FT F̈ = T (2.1)
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where T is the instantaneous cloud’s temperature, F is the 3 × 3 matrix which determines the
linear relation between Lagrangian coordinates a and Eulerian coordinates x:

xi = Fija
j , (2.2)

the lower index T denotes transposition and the (double) dot denotes (double) differentiation
with respect to the time t. Dyson showed that (2.1) may be rewritten in the form

F̈ij + ∂Uth/∂Fij = 0 (2.3)

where the thermal energy of the ideal gas Uth is proportional to T and, as a consequence of the
continuity equation and of the law of adiabatic expansion, is a function of det F only—whence
the interpretation as Hamiltonian motion of a particle in the nine-dimensional Euclidean space
with coordinates Fij, and the associated integral of energy:

E = 1/2Tr(ḞT Ḟ ) + Uth. (2.4)

Gaffet (1996: see section 3.1 therein) has noted that the polar moment of inertia R2 of any
freely moving cloud of monatomic gas was a quadratic function of time, and introduced the
transformation of the time coordinate:

τ =
∫

dt/R2(t). (2.5)

As a result, the motion was shown (Gaffet 1996, sections III.2, III.3) to be still Hamiltonian,
with τ playing the role of time, in the particular case of zero angular momentum, which was
the main subject of this 1996 article.

Later on, considering in full generality the equations of motion for the Dyson model
without vorticity (Gaffet 2001c, equation (4.9) therein), it was found that they coincided with
the equations derivable from a Lagrangian (Gaffet 2001a, Paper I, appendix A)—and hence
also derivable from the corresponding Hamiltonian, with τ playing the role of time and with
the nine coordinates Fij replaced by the new coordinates Fij/R. In this way the radial motion
can be eliminated, and the new (Hamiltonian) motion takes place on the eight-dimensional
surface of a unit hypersphere.

A detailed treatment of how to derive the new Hamiltonian from the original one may be
found in the review by Borisov et al (2009).

We now summarize the results concerning the equations of motion and their first integrals.

2.1. Equations of motion

The shape of the ellipsoidal cloud may be represented by a diagonal matrix with unit
determinant:

� = diag(�1,�2,�3) (2.6)

where �i are proportional to the squares of the principal axes. The instantaneous state of
deformation and rotation may be described by a traceless 3 × 3 velocity matrix v, which
is symmetric in the absence of vorticity. Its off-diagonal elements are related to the (anti-
symmetric) angular velocity matrix ω in the moving frame—that is, the frame defined by the
principal axes:

ωij = (�i + �j)

(�i − �j)
vij (i �= j) (2.7)
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while the diagonal elements reflect the rates of deformation as
d

du
ln �i = 2vii . (2.8)

Then the equations may be written compactly in the form
dv

du
+ v2 + [v, ω] − 1

�
= kI (2.9)

where k is an a priori arbitrary scalar, meaning that the traceless part of the left-hand side must
be zero.

As already noted, the equations of motion are derivable from a Hamiltonian, with time τ

canonically conjugate to the energy, and it is conjectured—based on the study of various sub-
cases—that the system possesses the Painlevé property (Kowalevski 1889a, 1889b, Painlevé
1902, Ince 1956) with respect to the independent variable u:

u =
∫

Tr(�) dτ . (2.10)

2.2. The constants of motion

Introducing the notation:

Xn = Tr(vn�)

(n = 0, 1, 2)

Yn = Tr(vn/�)

(2.11)

and the characteristic equation of the matrix v :

v3 + T v − P = 0, (2.12)

the energy constant assumes the form

9m = X0X2 − X2
1 + 3X0 (2.13)

where m is the constant, the term X0X2 − X2
1 represents the kinetic part of the energy, and X0,

which is proportional to the temperature, its potential (thermal) part.
The angular momentum has components in the moving frame:

jk = (�i − �j)vij (i, j, k = Circ. perm. of 1, 2, 3) (2.14)

and the square j 2 of the angular momentum vector is also constant.
Two more conservation laws, denoted by I6 and L6, both of the sixth degree in the momenta,

were found in Paper I; the first involves a new vector

j̃ = −�j (2.15)

which may be viewed as resulting from the vector j under the inversion of the diagonal matrix
�, and also involves two matricial combinations of v and �:

U = �−1(v2 + 4T/3)�−1 V = �(v2 + T/3) (2.16)

with the property

det U = det V = P 2 + 4
27T 3. (2.17)

It admits the following remarkable form:

I6/27 = j̃ 2/3 + det U + Tr(2UV + U + 2V ). (2.18)

The second one assumes the form of a triple product, and involves the new vector j̃ as well
as j :

L6 = (j̃ , vj̃ , v2j̃ − 3j). (2.19)

4
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Together with the z-component of angular momentum (in a fixed frame), these constants of
the motion ensure Liouville integrability of the system considered (Whittaker 1959).

2.3. Liouville integrability

The system here considered is Liouville integrable (Paper I), that is to say, the five integrals of
motion m, J 2, Jz, I6, L6 are functionally independent, and the associated symmetry generators
commute.

To show that n quantities E1, E2, . . . , En are functionally independent, it suffices to show
that E2 �= f (E1), E3 �= f (E1, E2), . . . , En �= f (E1, E2, . . . , En−1). Clearly, m, J 2, Jz,
which represent the energy and angular momentum, should be independent. The fact that
functional independence still holds when the new integrals I6 and L6 are introduced was
proved in Paper I (appendix B). The integral Jz, which is a component of angular momentum
in a fixed frame, is evidently functionally independent of all the other integrals, since it involves
the rotation matrix relating the fixed and the rotating frames: the rotation matrix, unlike the
integrals m, J 2, I6, L6, does not admit an expression in terms of quantities defined in the
rotating frame.

Concerning the proof that the five integrals commute, we remark that, once the Lagrangian
or the Hamiltonian is given (Paper I, appendix A), it is merely a matter of calculation, however
long and tedious it may be.

Commutativity of the five integrals has been confirmed independently by Borisov et al
(2009).

3. The variables π, ρ, R, W and their generalization

Let us first recall that the main motivation for undertaking such a generalization is that these
variables are directly related (by a linear transformation with constant coefficients) to variables
which make the system manifestly separable in the cases of rotation about a fixed axis.

It is unfortunate that they do not appear to have a clear physical meaning, for otherwise
it would probably have greatly simplified the task of deducing their general expression.
Nevertheless, it is remarkable that a natural generalization could indeed be found, at least in
the cases with precessing motion considered in the present work.

3.1. The block-diagonal definition of the variables

The following definitions were given in Paper I—assuming a block-diagonal matrix v of the
general form

v =
⎡
⎣v11 v12 0

v21 v22 0
0 0 v33

⎤
⎦ (3.1)

with v21 = v12 and v33 = −(v11 + v22):

π = 1/�3 (3.2)

− (ρ + π) = v2
33 + T/3 (3.3)

W = X2 + T X0/3 + πρ(ρ + π − T ) + (ρ + π)/π (3.4)

(R/4 + j 2/3)/ε = −(�1 + �2) − (ρ + π − T )/�3 (3.5)
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and, in the notation of Paper II:

ε = −I6/108 β = 3εm + (1 − ε)j 2/3. (3.6)

We remark that the definition of ρ may be rewritten (see equations 2.14, 2.15) as

ρ = −(V33 + 1)/�3

= (j |V + 1|j)/(j.j̃ ) (3.7)

while

π = −j 2/(j.j̃ ) (3.8)

and the notation (a|M|b), where a, b are vectors and M is a matrix, means the scalar product
of a with M b (we occasionally also write simply (aMb)).

The above expressions suggest that the four basic variables in the block-diagonal case are
really �3, ρ�3, R�3,W�3, which constitute a Cartesian homogeneous coordinate system in
which the equation of (	) has a quartic form.

Thus, we might expect that a generalization of the coordinates should be based on the
assumption that Z0 = (j.j̃ ) plays the role of a common denominator of the three Cartesian
coordinates ρ,R,W , and that the numerator of ρ is Z1 = (j |V + 1|j).

3.2. Generalizing the variables π and ρ

Leaving the block-diagonal restriction, we now look for an appropriate generalization of the
four variables, under the simplifying assumption of a ‘minimal energy’ of the motion. We
further assume, as a first step, a vanishing value of the integral L6, which entails degeneracy
of the polynomial P associated with the Liouville torus.

In what follows we shall denote by (	4) instead of (	) the Liouville torus when expressed
in a coordinate system in which it has the form of a quartic surface. Degeneracy entails (see
Gaffet 2003) the presence of a double line (L0) on (	)—called the singular solution—so that
any plane section of (	4) must be a quartic curve having a double point—a genus 2 curve. As
a consequence, under the assumption that Z0 = 0, Z1 = 0 represent plane sections of (	4),
they ought to be curves of genus 2 on (	). As it turns out, this is not the case, which means
that the proposed expressions of Z0 and Z1 do not constitute the expected generalizations.

At this point we remark that we may add to Zn any expression which has the form of a
triple product, without altering its value in block-diagonal cases, so that the correct generalized
variables might well incorporate such terms. The integral L6 itself is a triple product but, being
merely zero, it does not serve our purpose. It may however be decomposed into a sum of triple
products, which are not constant:

L6 = L66 + L64 (3.9)

where the second lower index indicates the (homogeneous) degree in the momenta. Moreover,
we may also take into account any other triple product, and in particular those which correspond
to the above ones under the exchange of j and j̃ , namely

K66 = (j, vj, v2j)

K64 = −3(j̃ , j, vj).
(3.10)

It then turns out that the following combinations

Z0 = (j.j̃ ) + (L66 + K66)/36

Z1 = (j |V + 1|j) + (17 L66 + K66)/36
(3.11)

6
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constitute acceptable candidates for homogeneous Cartesian coordinates, as the sections
Z0 = 0, Z1 = 0 are now both of genus 2. The constant factors in the above expressions
are for the particular case where

m = 5, j 2 = 12, ε = 4,

from which it follows that L6 = 0, under the assumption of minimal energy (and in fact, there
are only six values of ε compatible with the given values of m and j 2), a case which has been
treated in detail by Gaffet (2003). It should be noted that, in view of the fact that the degenerate
cases form a homogeneous class, among which the above particular choice is generic, it is
clear that any other choice of the constants of motion would at most alter the values of some of
the numerical coefficients in the above expressions. We also note that the determination of the
genus of the sections considered is facilitated by the existence of a parametric representation
of (	) (Gaffet 2003, equation (4.4) therein): the sections of genus 2 being characterized by
the property that their representation involves a square root of a polynomial of the sixth degree
only.

3.3. The variable R

Multiplying the right-hand side of the definition (3.5) of R by the common denominator �3

yields the quantity (see equation (2.16))

ZR0/j
2 = −(�1 + �2)�3 − (ρ + π − T )

= (�3 − X0)�3 + (v2
33 + 4T/3)

= −X0�3 + �2
3(U33 + 1) (3.12)

suggesting the following generalized expression:

ZR0 = (j̃ |U |j̃ ) + j̃ 2 + X0(j.j̃ ). (3.13)

This is again unsatisfactory, as the section ZR0 = 0 of the surface (	) is found not to be a
curve of genus 2. The correct solution in that case turns out to be

ZR = ZR0 + (K66 − L66)/9 (3.14)

as the section ZR = 0 is indeed of genus 2 only.
The singular solution is common to the Liouville tori of the block-diagonal case and

of the present case incorporating precession: it is their intersection. From the study of the
block-diagonal case we know that the linear combination

ZR + Z1 − 5 Z0 (3.15)

vanishes on the singular solution, but in the present case it is found to vanish everywhere
on the surface (	), so that ZR is merely a linear combination of the two coordinates already
obtained.

3.4. The variable W

Noting that

TrV = X2 + T X0/3 (3.16)

the block-diagonal definition (3.4) of W may be written as

W = Tr V − V33 − ρ�3 U33

= V11 + V22 − ρ�3 U33. (3.17)

7
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Multiplying by −�3 yields (taking account of (3.7)) the quantity

ZW0/j
2 = −�3Tr V + �3V33 − �3U33(V33 + 1). (3.18)

This admits a natural generalization in the form

ZW0 = (j.j̃ )Tr V + (j̃ |UV + U − V |j). (3.19)

As usual, several triple products of the form (3.10) have to be added in order to obtain a section
(ZW = 0) of genus 2:

ZW = ZW0 + 2
9 (3 L66 + K66 + 2 K64). (3.20)

We choose as our third coordinate the linear combination

Z2 = Z0 + Z1 − ZW/4 (3.21)

which is known, from the study of the block-diagonal case, to vanish on the singular solution
(L0).

On (L0), where the matrix v is block-diagonal, all triple products, such as L66,K66, etc,
must vanish. The ratio K66/L66 is found to be homographically related to the parameter
(denoted by w in Gaffet 2003) occurring in the parametric representation of the surface (	):

K66/L66 = 24

x
− 5 (3.22)

with x ≡ w + 3.
The new coordinate Z2, which must be proportional to L66 as well, admits the following

simple expression involving x:

Z2 = 2
9L66 M2/x

2 (3.23)

where

M2 = x2 + 24. (3.24)

3.5. The fourth coordinate

Owing to the linear dependence of the variable ZR generalizing R (see equation (3.15)), there
is still one coordinate missing.

Let us recall that in Paper III a method has been given to determine a set of four
homogeneous coordinates Un say (n = 0,1,2,3) related to the original coordinates by a
transformation which involves an a priori arbitrary point C on (	), called the ‘central point’
of the transformation, through which all the coordinate surfaces must pass. In order that (	)

assume a quartic form in these new coordinates, it is necessary however that C should be a
singular point on (	). Then we find that the (homogeneous) coordinates Z0, Z1, Z2 coincide
with the Un, except for a complicated and non-trivial proportionality factor, provided that C
be taken to be the point at infinity on the singular solution. (This is in fact the reason for the
presence of a factor M2 in equation (3.23), as this factor vanishes at that point.)

The missing coordinate may then be readily deduced, and is simply given by

Z3 = Z2/x. (3.25)

8
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3.6. The quartic form of the surface (	)

The Liouville torus assumes the quartic form, in coordinates Z0/Z3, Z1/Z3 and x ≡ Z2/Z3:

16N2(Z0/Z3)
2 − 32(x − 6)

(
Z0Z1/Z

2
3

)
+ 4

3M2(Z1/Z3)
2 − 48x(x − 4)(Z0/Z3)

− 4(x3 − 2x2 + 96)(Z1/Z3) + x2(x2 + 48) = 0 (3.26)

with

N2 = x2 − 6x + 6. (3.27)

Moreover, the four coordinates satisfy an identity, the analog of equation (1.3):

x2(3Z0 + Z2 − 24) − 2x(12Z0 + 4Z1 + 3Z2) + 48(Z1 − 12) = 0 (3.28)

which is now cubic however, instead of quadratic. It is an inhomogeneous relation, and thus
it serves to fix the overall scale of the Zn.

Let us also note that the above identity provides an independent way of determining the
fourth coordinate Z3 (it is a second degree equation for Z3).

A reduced form of (	4),

N2 Z2 + 12(x − 6)Z + 3M2 − 2D4X
2 = 0 (3.29)

which is quartic in coordinates x, 1/X,Z/X, may be achieved through a linear transformation

1/X = (x − 2) − 2
3 (Z1/Z3)

Z/X = 4(Z0/Z3 − 3)
(3.30)

and

D4 ≡ x4 − 6x3 + 18x2 − 288. (3.31)

Equation (3.29) is quartic in coordinates Z,X and Y ≡ xX as well. In that coordinate system
the singular solution is the Z axis, and x represents the slope of plane sections through it.

On the singular solution X = 0 and Z ∝ 1/ρ. The resulting second-degree equation for
Z has D4 for discriminant, so that the complete equation (3.29) can be solved for Z in the form

N2 Z + 6(x − 6) =
√

D4(2N2X2 − 3). (3.32)

4. Common nature of the differential systems in the degenerate cases, with or
without precession

In general, the surface (	4) is, in the degenerate cases, a quartic with 16 conic point
singularities, 8 of which have coalesced into 4 ‘double conic points’ (see Paper III) located on
the singular solution, and its reduced expression must have the form

N2 Z2 + 2P2 Z + M2 − k D4 X2 = 0
D4 ≡ M2 N2 − P 2

2
(4.1)

where M2, N2, P2 are polynomials in x of at most second degree, and k is a reducible constant,
which we may take to be unity without loss of generality. Equation (4.1) may be solved for Z
as

N2Z + P2 =
√

D4(N2X2 − 1). (4.2)

Performing the coordinate transformation on the original equations of motion yields a system
where the variable x can be separately determined (see Gaffet 2003, equation (5.3) therein):

dx/du = const ×
√

D4 (4.3)

9
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and the remaining X and Z satisfy a system of the same general form as in the block-diagonal
case:

d ln X/dx = aZ + b

dZ/dx = cX2 + dZ + e.
(4.4)

In the above equation, a, b, c, d, e are rational functions of x only, which are such that, upon
elimination of Z, the resulting differential equation for X assumes the form

N2d ln X/dx = −N ′
2/2 + f (x)

√
(N2X2 − 1)/D4 (4.5)

where N ′
2 is the derivative of the polynomial N2. Whatever the function f may be, this equation

may be rewritten as

dα/dx = f/N2/
√

D4 (4.6a)

tan α =
√

N2X2 − 1 (4.6b)

where α may be geometrically interpreted as the eccentric anomaly on the conic (4.1) (in
coordinates 1/X, Z/X). As the right-hand side of equation (4.6a) is a function of x only, that
equation is immediately integrable by quadrature, as expected from a system of the Liouville
type.

5. Conclusion

In the paper by Gaffet (2001a, Paper I) it was shown that in the case of rotation about a fixed
axis (the block-diagonal case) the evolution of the spinning cloud is governed by a differential
system of simple and remarkable form: equation (1.1), in terms of a set of four new variables
designated π, ρ,R,W , defined in a quite non-trivial way (section 3.1).

We have shown here that these variables admit a natural generalization when precession
is included, at least in the degenerate cases, which are the subject of the present work. The
generalization involved three main steps.

• The correct identification of �3 ≡ 1/π as the common denominator of the expressions
defining ρ, R, W and, as a consequence, its generalization in the form of the scalar
product j.j̃ , together with the realization that (�3, ρ�3, R�3,W�3) play the role of a
homogeneous Cartesian coordinate system, in which the Liouville torus assumes a quartic
form.

• The (unexpected) occurrence of the triple products L66,K66,K64 as additive correction
terms to the numerators of ρ, R, W and to their common denominator j.j̃ .

• The introduction of two matrices U and V (equation (2.11)), which proved particularly
useful when generalizing the variable W (equation (3.19)). Let us mention that they also
make possible a remarkably compact (and fully general) formulation of the integral of
motion I6, presented here for the first time (equation (2.18)).

We hope to extend these results in a future work to the non-degenerate cases as well.

Note added. In Paper III we introduced eight auxiliary surfaces given by a polynomial equation Sn(X0, Y0, T ) =
0 (n = 1, . . . , 8) and we showed that it is possible to choose four linear combinations Um of them, which constitute
a Cartesian coordinate system in which the Liouville torus assumes a quartic form (see also section 3.5 of the present
paper). As it turns out, the following seven quantities:

1, X0, (j · j̃ ), (jVj),
(
ZW0 + 4

9 K64

)
, L66, K66

considered, and defined in full generality here (see equations (3.11), (3.19)), coincide with (linearly independent)
linear combinations of the eight ratios Sn/S1.

This is quite a non-trival result, as these equalities only hold provided that the equation (F (X0, Y0, T ) = 0)

of the Liouville torus is satisfied. The identification of ZW0 + 4
9 K64 with one of the polynomials Sn is particularly

remarkable, as it involves a rather intricate combination of the matrices U and V (equations (2.16), (3.19)).
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